PRODUCT FACT SHEET

Aerodynamics Technology (40-assignment)

This is an integrated instructional module designed specifically to operate within the LJ ScanTEK Modular Technology Program environment. It includes a 10-assignment exploratory curriculum and a further 30-assignment in-depth curriculum. The exploratory curriculum and the in-depth curriculum are each split into two parts. Each part includes a pretest and post test. The module includes hardware, software and curriculum materials sufficient to provide a complete learning experience.

The curriculum incorporates continuous assessment through questions. When used in conjunction with a ClassAct networked management system, this provides instant feedback of student performance. The assessments begin with a comprehensive pre-test. This quiz includes questions for each subsequent assignment, together with questions that will specifically test math and reading ability.

Every assignment starts with a series of questions designed to track inventory. These ensure that any missing items are located before they are needed.

Each assignment is divided into a series of tasks. Hands-on tasks form the core of the student work. Where appropriate, these are accompanied by research tasks based upon illustrated textbooks and onscreen applications. Assessment questions are incorporated into each task.

Typical 10-assignment topic areas include:

- Aerodynamics
- Control of a wind tunnel
- Measuring wind resistance in a wind tunnel
- Wind resistance of different vehicle shapes
- Vehicle designs
- Car designing
- Lift, down-force and drag aerodynamic forces
- Wing design for optimum lift
- Measuring lift force
- Comparing different types of wing
- Designing a glider

Typical 10-assignment activities include:

- Perform experiments to demonstrate the two basic aerodynamic forces.
- Explore the functions and controls of a real wind tunnel.
- Discover how to measure wind resistance using the wind tunnel.
- Measure the wind resistance of different vehicle shapes
- Observe the effect of adding a spoiler to an automobile.
- Use a computer program to design an automobile.
- Use the computer program to simulate wind tunnel and road tests of a vehicle design.
- Use the wind tunnel to produce lift force from a simple wing design.
- Discover what the angle of attack is.
- Observe the airflow around wings when the angle of attack changes.
- Measure the aerodynamic force that pushes airplanes off the ground.
- Find out how this force changes when the angle of the wing is changed.
- Test different wing designs to discover which is most suitable for flying.
- Make a model glider and test its ability to maneuver in the wind tunnel.

Typical 30-assignment topic areas include:

- An introduction to the laws of pressureStatic and dynamic pressure and the
- Bernoulli equation
- Wind tunnels
- Lift and drag
- Making a car 'stick' to the ground using down force
- Vehicle handling
- Mechanical design of a vehicle
- Vehicle design criteria
- Wing design
- Angle of attack, profile and chords
- Aerofoils and flaps
- Aspect ratio and span
- Turbulence
- Basic aircraft design
- Propeller power
- Helicopters and airplanes Supersonic aerodynamics
- Building design problems
- Bridge design to overcome unwanted aerodynamic characteristics
- Aerodynamics of ballistics
- Prototyping

Typical 30-assignment activities include:

- Identify how static and dynamic air pressure influences aerodynamics.
- Demonstrate a fundamental aerodynamic principle discovered by Bernoulli.
- Describe different types of wind tunnels and their component parts.
- Identify how to control the wind speed within the wind tunnel.
- Define how drag values can be measured in the wind tunnel.
- Demonstrate drag acting on a parachute.
- Describe the relationship between facing area and drag.
- Show how to use the computer to measure aerodynamic forces acting on objects in the wind tunnel.
- Differentiate the drag caused by various vehicle shapes.
- Identify reasons for selecting a particular type of vehicle.
- Identify the effect of downforce.
- Show how automobile design is influenced by downforce.
- Complete a virtual wind tunnel and road test on a computer designed car.
- Design the mechanical and aerodynamic components of a car using a computer.
- Examine the design criteria of a car from a set of customer requirements.
- Produce a vehicle design on a computer to fulfill a set of design criteria.
- Evaluate the effectiveness of adding a spoiler to a car design.
- Compare results of downforce for
- vehicles with and without spoilers.Identify the pioneers of
- aerodynamics technology.
- Indicate the airflow around a flat wing. Recognize the need for various
- wing designs.
 Show how the lift of a wing changes with the angle of attack.
- Describe the differences between a flat, cambered and symmetrical wing.

Aerodynamics Technology (40-assignment)

Typical 30-assignment activities include (continued):

- Describe the technical terms relating to an aerofoil.
- Calculate the size of an aerofoil to NACA standards.
- Describe how changing the wing span can alter the lift generated by a wing.
- Demonstrate how the chord length will affect the lift generated by a wing.
- Show how turbulence can affect the performance and handling of a sports car.
- Assess the stall point of a wing by increasing the angle of attack.
- Identify warning systems used in aircraft to avoid stalling.
- Construct a paper airplane following written instructions.
- Relate the control surfaces on a paper airplane to those of a real aircraft.
- Devise a paper airplane design to meet specified requirements.
- Evaluate the torque produced by 2 and 4 blade propellers.
- Identify the coding system used for propellers.
- Compare the flight of helicopters to that of airplanes.
- Calculate the speed of sound at various altitudes.
- Describe how aircraft technology has changed over the past 100 years, including advances in aerodynamic design.
- Complete a word grid of technical aerodynamic terms.
- Describe wind characteristics around an international airport.
- Classify wind speed by the Beaufort range.
- Describe the effect the wind will have on a skyscraper.
- Identify how the shape of a building can help with minimizing forces created by the wind.
- Identify the effect of wind on a model chimney.
- Solve the problem caused by wind against a chimney.
- Calculate the force of wind on a building.
- Describe problems caused by wind flow around bridges.
- Evaluate a solution to an unstable bridge problem.
- Recognize how real bridges can become unstable due to the effects of the wind.
- Design an addition to a bridge to overcome unwanted aerodynamic characteristics.
- Identify how aerodynamics is involved in the topic of ballistics.
- Show how the shape of the bullet can affect its range.
- Design a powered aircraft to fly a specified distance.
- Build and test a prototype of the aircraft.
- Evaluate the design of the prototype aircraft.
- Create a report on an aerodynamic topic.

Each assignment is designed around a list of performance objectives. These lists include academic, technical and occupational objectives. The assignments are written in such a way as to enable a student to attain the performance objectives, with the assessment questions linked to these in order to provide a measure of true competency.

The performance objectives are used by the ClassAct management system to generate a comprehensive portfolio of student competency reports. Default reports supplied with this module include:

- Entry report
- Technical/Occupational Exit report
- Basic Skills report based upon the federal SCAN's report.

The items supplied with this instructional module include:

- 10-assignment On-Screen Student Assignment Guide CD
- 10-assignment Student Assignment Guide
- 10-assignment Student Visignment
- 10-assignment Instructor's Guide
- 30-assignment Student Assignment Guide
- 30-assignment Student Workbook
- 30-assignment Instructor's Guide
- Computer Aided Instruction Software
- Video: 'Aerospace Processes'
- Car Builder Software
- Wind Tunnel
- Pre-cut balsa shapes
- Modeling clayAerostream Monitor Interface Unit
- Aerostream Monito
 Safety glasses
- Salety glasses
 Oscillating bridge mod
- Oscillating bridge modulePropeller support module
- Elastic band powered model airplane

Additional items required:

Computer

Module Facts

For Technology Program, order as: ST180/40 Aerodynamics Technology

	No.	Average
		time
Assignments	40	45 minutes
Extension Activities	5	45 minutes
	Total	33 ³ / ₄ hours

LJ Technical Systems Web site: www.ljgroup.com