PRODUCT FACT SHEET

Computer Aided Design (40-assignment)

This is an integrated instructional module designed specifically to operate within the LJ ScanTEK Modular Technology Program environment. It includes a 10-assignment exploratory curriculum and a further 30-assignment in-depth curriculum. The exploratory curriculum and the in-depth curriculum are each split into two parts. Each part includes a pretest and post test. The module includes hardware, software and curriculum materials sufficient to provide a complete learning experience.

The curriculum incorporates continuous assessment through questions. When used in conjunction with a ClassAct networked management system, this provides instant feedback of student performance. The assessments begin with a comprehensive pre-test. This quiz includes questions for each subsequent assignment, together with questions that will specifically test math and reading ability.

Every assignment starts with a series of questions designed to track inventory. These ensure that any missing items are located before they are needed.

Each assignment is divided into a series of tasks. Hands-on tasks form the core of the student work. Where appropriate, these are accompanied by research tasks based upon illustrated textbooks and onscreen applications. Assessment questions are incorporated into each task.

Typical 10-assignment topic areas include:

- Introduction to AutoCAD
- Absolute and relative co-ordinates
 Vitabon plan design
- Kitchen plan design
- Drawing in orthographic projection
- Z axis and three-dimensional graphics
- Redesigning a component part
- Architectural and mechanical drawings
- Manufacturing and production
- Scale and grids in CAD
- Snap to grid
- Line, Offset, Trim, Fillet and Mirror commands
- Printing drawings
- Circle, Arc, Zoom and Copy commands
- Polyline and Array commands.

Typical 10-assignment activities include:

- Recognize how CAD can replace traditional drafting methods.
- Examine sample CAD files.
- Extract information from a CAD Tutorial.
- Investigate absolute and relative co-ordinates.
- Recognize how 2-dimensional co-ordinate systems are used in CAD.
- Describe the role of CAD in a design and production process.
- Determine how CAD packages are used in the field of architecture.
- Recognize how to set up the design area for CAD drawings.
- Draw a kitchen plan.
- Investigate basic line conventions used in drafting.
- Discover the standard way that objects are drawn for manufacturing purposes.
- Examine the principles of orthographic projection.
- Draw the top and front view of a component part.
- Draw an orthographic projection.

Typical 10-assignment activities include (continued):

- Investigate 3-dimensional co-ordinate systems.
- Draw a 3D mechanical component.
 Follow a design brief to design a component part.

Typical 30-assignment topic areas include:

- Shape commands
- Printing drawings
- AutoCAD editing commands
- Co-ordinates
- Orthographic projection
- Projection symbols
- Representing 3D objects in 2D
- Polar co-ordinate system
- Polygons and ellipses to draw architectural symbols
- Fillets and chamfers
- The trim and extend commands
- Mirroring objects
- Red hot grips
- Viewports

- Printing preparation
- Using blocks and snaps
- Linear and radial dimensions
- Using layers to organize a drawing

Typical 30-assignment activities include:

- Explain how to magnify areas of a drawing.
- Determine all the information that needs to be included in any drawing.
- Recognize how to organize drawings correctly.
- Identify how to print out drawings.
- Recognize how 2-dimensional co-ordinate systems are used in CAD.
- Determine how 3-dimensional objects are presented in 2-dimensional drawings.
- Explain the definition of orthographic projection.
- Distinguish between first and third angle projection.
- Draw an orthographic projection of a dice.
- Recognize the correct projection symbol
- for an orthographic drawing.Produce realistic 3-dimensional
- drawings. Recognize the difference between
- Recognize the difference between oblique, axonometric and isometric views.
- Set up an isometric grid.
- Draw isometric views of
- different blocks.
- Explain the polar co-ordinate system.
- Use polar co-ordinates to draw an object.
- Recognize that most CAD drawings are based on simple geometrical shapes.
- Use simple shapes such as polygons and ellipses to draw architectural symbols.
- Explain what a fillet is.
- Use the fillet command to edit a drawing.
- Explain what a chamfer is.

Computer Aided Design (40-assignment)

Typical 30-assignment activities include (continued):

- Determine how to change the size of a fillet or chamfer.
- Use editing commands to complete an architectural drawing of a door.
- Use the trim command to edit a drawing.
 Use the extend and offset commands to edit a drawing.
- Investigate grip editing to change a drawing.
- Mirror objects within a drawing.
- Minor objects within a drawing.
 Move an object within a drawing.
- Scale an object within a drawing.
- Copy and reposition an object within a drawing.
- Recognize the editing commands needed to complete a drawing of a small aircraft.
- Customize a drawing to suit specific requirements.
- Determine how to create different viewports within a drawing.
- Recognize how blocks and symbols can simplify a drawing.
- Insert blocks into a drawing of a house.
- Define an object snap.
- Determine the benefits of using object snaps when drawing.
- Distinguish between various object snaps.Interpret the standard rules
- for dimensioning.Add linear and radial dimensions to
- a drawing.Recognize the types of dimensions offered in CAD packages.
- Use relevant dimensions to complete a drawing.
- Interpret various two and threedimensional drawings.
- Explain the different types of lines used in drafting.
- Set up layers within a drawing.
- Determine how layers can simplify the drafting process.
- Complete a drawing on different layers.
 Follow a design brief to sketch the
- orthographic projection of a component.
 Set up the drawing to meet the specific
- requirements of a design brief.Complete the front elevation of
- the component.Complete the left elevation of
- the component.
- Dimension and print out the component to complete a lengthy design project.

Each assignment is designed around a list of performance objectives. These lists include academic, technical and occupational objectives. The assignments are written in such a way as to enable a student to attain the performance objectives, with the assessment questions linked to these in order to provide a measure of true competency.

The performance objectives are used by the ClassAct management system to generate a comprehensive portfolio of student competency reports. Default reports supplied with this module include:

- Entry report
- Technical/Occupational Exit report
- Basic Skills report based upon the federal SCAN's report.

The items supplied with this instructional module include:

- 10-assignment On-Screen Student Assignment Guide CD
- 10-assignment Student Assignment Guide
- 10-assignment Student Workbook
- 10-assignment Instructor's Guide
- 30-assignment Student Assignment Guide
- 30-assignment Student Workbook
- 30-assignment Instructor's Guide
- Computer Aided Instruction Software
- Symbols Reference Sheet
- AutoCAD
- Glossary of Commands
- Printer
- Drawing techniques factsheet
- Robot jaw
- Ruler
- Design block kit

Additional items required:

Computer

Module Facts

For Technology Program, order as: ST130/40 Computer Aided Design

	No.	Average
		time
Assignments	40	45 minutes
Extension Activities	5	45 minutes
	Total	33¼ hours

LJ Technical Systems Web site: www.ljgroup.com