PRODUCT FACT SHEET

Hydraulics (40-assignment)

This is an integrated instructional module designed specifically to operate within the LJ ScanTEK Modular Technology Program environment. It includes a 10-assignment exploratory curriculum and a further 30-assignment in-depth curriculum. The exploratory curriculum and the in-depth curriculum are each split into two parts. Each part includes a pretest and post test. The module includes hardware, software and curriculum materials sufficient to provide a complete learning experience.

The curriculum incorporates continuous assessment through questions. When used in conjunction with a ClassAct networked management system, this provides instant feedback of student performance. The assessments begin with a comprehensive pre-test. This quiz includes questions for each subsequent assignment, together with questions that will specifically test math and reading ability.

Every assignment starts with a series of questions designed to track inventory. These ensure that any missing items are located before they are needed.

Each assignment is divided into a series of tasks. Hands-on tasks form the core of the student work. Where appropriate, these are accompanied by research tasks based upon illustrated textbooks and onscreen applications. Assessment questions are incorporated into each task.

Typical 10-assignment topic areas include:

- Building and testing hydraulic circuits
- Pressure, force and area relationship
- Hydraulic component symbols
- Compression of gases
- Cylinder diameter and speed relationship
- Hydraulic valves to control a circuit
- Energy flow in a hydraulic system
- Hydraulic lever.
- Hydraulic cylinders
- Volumetric efficiency
- Bernoulli's law

Typical 10-assignment activities include:

- Find out what hydraulics is and the basic parts of all hydraulic systems.
- Investigate compressibility and compare the performance of oil and air.
- Explain compressibility using the structure of matter.
- Look at the pressure, force and area relationship.
- Discover Pascal's law and how it relates to hydraulic technology.
- Recognize how symbols can be used in hydraulics to simplify the design and drawing of circuits and components.
- Investigate hydraulic valves and how they are used to control what happens in a hydraulic circuit.
- Look at the output part of hydraulic systems – cylinders.
- Investigate fluid flow and how it is measured.
- Discover Bernoulli's law which relates fluid flow and pressure. See how flow rate affects cylinder speed.
- Investigate the formula F = P x A
- Discover the principle of the hydraulic lever and how hydraulic systems can be used to magnify forces.

Typical 10-assignment activities include (continued):

 Design a hydraulic system to operate two cylinders in sequence and simulate an aircraft undercarriage system.

Typical 30-assignment topic areas include:

- Power control system
- Pressure measurement
- Compressibility of oil and air
- Force, pressure and area
- Hydraulic pumps
- Hydraulic symbols
- Compressibility of gases and liquids
- SI units
 Control v
- Control valves
 Fluid flow
- Fluid riow
 Fluid velocity calculations
- Boyle's law
- Mechanical levers and
- mechanical advantage
- Bore size stroke time
- Flow control valves
- Check valves
- Hydraulic seals
- Sequencing hydraulics
- Hydraulic lift design
- Hydraulic braking system
- Shock absorbing system
- Accumulators

Typical 30-assignment activities include:

- Learn about how to use the hydraulics training system safely.
- Find out what hydraulics is and the basic parts of all hydraulic systems.
- Investigate the inputs and outputs of a hydraulic systems.
- Find out about energy and how it flows through a hydraulic system.
- Define pressure and look at different scales of pressure.
- Discover how pressure is measured and how atmospheric pressure is taken into account.
- Discover Pascal's law and how it relates to hydraulic technology.
- Discover that the weight of fluid can also create pressure.
- Discover how hydraulic symbols are used to simplify the design and communication of hydraulic systems.
- Investigate compressibility and compare the performance of oil and air.
- Explain compressibility using the structure of matter.
- Look at the output part of hydraulic systems – cylinders.
- Examine the factors that affect cylinder performance.
- Revise the formula $F = P \times A$.
- Investigate SI units and use them to solve force, pressure and area problems.
- Investigate hydraulic valves and how they are used to control what happens in a hydraulic circuit.
- Look at fluid flow; how it is defined and how it is measured.

Hydraulics (40-assignment)

Typical 30-assignment activities include (continued):

- Calculate fluid velocity in a number of situations.
- Discover Bernoulli's law, which relates pressure and fluid flow.
- Investigate hydraulic pipes and how they are selected.
- Build a simple hand pump to demonstrate the principle of positive displacement pumps.
- Investigate the basics of hydraulic pumps.
 Build a hydraulic machine and perform an energy analysis on it to
- determine its efficiency.
- Review basic pump types.
- Calculate pump efficiency.Look in detail at the most common type
- of hydraulic pumps.Recognize the properties of a
- hydraulic fluid.
- Define viscosity.
- Explore the filtering and pre-treatment of hydraulic fluid.
- Revise the principle of the mechanical lever.
- Demonstrate the principle of the hydraulic lever.
- Explore the principle of the hydraulic lever.
- Solve hydraulic lever problems.
- Determine the factors that influence cylinder speed.
- Calculate extension and retraction rates for cylinders.
- Investigate flow control valves and how they can be used to control the speed of hydraulic cylinders.
- Design a hydraulic system to operate a car park lift with unidirectional flow control.
- Explore the function of a check valve and its application in hydraulic systems.
- Select a cylinder for a hydraulic press application based on performance and cost factors.
- Perform an energy analysis to determine the performance of a hydraulic cylinder.
- Explore how hydraulics is used in braking systems.
- Compare the performance of water and air as a hydraulic fluid.
- Design a hydraulic system to operate two cylinders in sequence and simulate an aircraft undercarriage system.
- Investigate how hydraulic circuits are protected from the effects of high pressure.
- Explore how hydraulics technology is used in shock absorbing systems.
- Investigate the compression of gas and discover Boyle's law which relates pressure and volume at constant temperature.
- Design an aircraft safety system for use in the event of hydraulic pump failure.
- Explore hydraulic accumulator technology.
- Discover how heat is generated and dissipated from hydraulic systems.

Each assignment is designed around a list of performance objectives. These lists include academic, technical and occupational objectives. The assignments are written in such a way as to enable a student to attain the performance objectives, with the assessment questions linked to these in order to provide a measure of true competency.

The performance objectives are used by the ClassAct management system to generate a comprehensive portfolio of student competency reports. Default reports supplied with this module include:

- Entry report
- Technical/Occupational Exit report
- Basic Skills report based upon the federal SCAN's report.

The items supplied with this instructional module include:

- 10-assignment On-Screen Student Assignment Guide CD
- 10-assignment Student Assignment Guide
- 10-assignment Student Workbook
- 10-assignment Instructor's Guide
- 30-assignment Student Assignment Guide
- 30-assignment Student Workbook
- 30-assignment Instructor's Guide
- Computer Aided Instruction Software
- Hydraulics fact file
- Hydraulics Trainer
- Drip tray
- Hydraulic hoses
- Lever arm
- Swivel guard
- Fulcrum
- Pivot pinsStopwatch
- Stopwatch
 Hydraulic oil
- Funnel
- Paper towels
- Hydraulic brake simulator
- Tray
- Beaker

Additional items required:

Computer

Module Facts

For Technology Program, order as: ST280/40 Hydraulics

	No.	Average
		time
Assignments	40	45 minutes
Extension Activities	4	45 minutes
	Total	33 hours

LJ Technical Systems Web site: www.ljgroup.com