
Industrial Control Technology (40-assignment)

This is an integrated instructional module designed specifically to operate within the LJ ScanTEK Modular Technology Program environment. It includes a 10-assignment exploratory curriculum and a further 30-assignment in-depth curriculum. The exploratory curriculum and the in-depth curriculum are each split into two parts. Each part includes a pretest and post test. Where appropriate, the module includes hardware, software and curriculum materials sufficient to provide a complete learning experience.

The curriculum incorporates continuous assessment through questions. When used in conjunction with a ClassAct networked management system, this provides instant feedback of student performance. The assessments begin with a comprehensive pre-test. This quiz includes questions for each subsequent assignment, together with questions that will specifically test math and reading ability.

Every assignment starts with a series of questions designed to track inventory. These ensure that any missing items are located before they are needed.

Each assignment is divided into a series of tasks. Hands-on tasks form the core of the student work. Where appropriate, these are accompanied by research tasks based upon illustrated textbooks and onscreen applications. Assessment questions are incorporated into each task.

Typical 10-assignment topic areas include:

- Custom, batch and mass production methods
- Infrared sensor, Reed switch and push button sensing devices
- Logic AND, OR and NOT functions
- Pneumatic cylinder, electric motor and lamp actuators
- Ladder logic programming
- Latch function

Typical 10-assignment activities include:

- Use a custom production method to build three models.
- Use CAI to investigate the history of industrial control and explore the sensors and actuators on the Work-Cell.
- Use CAI to investigate automation and electrical, pneumatic and hydraulic power systems.
- Load and run a program that activates the Work-Cell actuators.
- Create a simple program that turns on the conveyor when a switch is pressed.
- Create a vending machine program and use it to select 'Soda Cans'.
- Discover logic gates and look at the use of ladder logic programs.
- Modify the 'latch' program so that the conveyor belt can be stopped.
- Edit a program to include the use of Reed switches.
- Create a program that can be used to eject bobbins into the appropriate storage bins by pressing red and green buttons.
- Create a program using timers to move a bobbin along the conveyor belt and stop in front of a cylinder piston, where it will be ejected
- Create a program that will sort the Work-Cell bobbins.

Typical 10-assignment activities include (continued):

Identify errors within a larger program.
Correct the program according to given guidelines.

Typical 30-assignment topic areas include:

- Introduction to manufacturing systems
- Quantity, quality, cost and
- production timeMass production
- Manual control
- Programmable logic controllers
- Programming in ladder logic
- Step logic statements
- Timers and counters in control programs
- Truth tables
- Latching outputs
- Process sequence waveform diagrams
- The social impacts of manufacturing
- Troubleshooting
- Flow charts
- Auxiliary components
- Flow charts and waveforms
- The design process
- Careers in manufacturing
- Component sorting program design

Typical 30-assignment activities include:

- Gain experience in building the gearbox model.
- Explore the manufacturing resources applied to a simple task.
- Build three models using the custom and mass production methods.
- Decide which manufacturing system would best suit different products.
- Introduction to the Work-Cell.
- Use CAI to learn about the origin of the electromagnetic relay.
- With the 'Machine Cover' in place, use the 'Sensor Status' LEDs to determine the position of the bobbin on the conveyor belt.
- Use the Programmable Logic Control software.
- Place the 'Machine Cover' over the conveyor belt. Load a demonstration program showing the computer performing the manual control task more efficiently.
- Use CAI to learn about input interfaces and opto-couplers.
- Sort a list of Work-Cell elements into a table of inputs and outputs.
- Create a simple program to activate an output.
- Use CAI to find out how the Work-Cell works.
- Explore the use of logic AND, OR and NOT gates.
- Discover truth tables and how to
- Use a sample ladder logic program and a given truth table to answer questions.

Industrial Control Technology (40-assignment)

Typical 30-assignment activities include (continued):

- Load the programme again and, in the student workbook, complete a truth table.
- Discover how to 'latch' an output.
- Create and extend a simple program to show understanding.
- Use CAI to learn about the Work-Cell sensors.
- Using the Work-Cell Sensors, incorporate AND/OR instructions to complete a series of programs.
- Use both logic statements and sensors to complete a program to control a ScanCan production line.
- Understand how Reed switch sensors work
- Edit an existing program and add steps to include the use of Reed switch and Work-Cell sensors.
- Create and complete a program to simulate a sorting line in a factory.
- Test the program.
- Repeat the testing process, using more complex criteria.
- Troubleshoot a series of programs.
- Discover step logic description.
- Explore auxiliary components.
- Discover basic flow charts and convert to ladder logic.
- Complete a programme to test pneumatic power supply.
- Use a text book to read about careers in the manufacturing industry.
- Identify characteristics of a ladder logic counter and complete a program using counters.
- Edit and test this program.
- See logic timers represented as a waveform.
- Create a program using a timer.
- Create a program to move a bobbin along the conveyor belt and into a storage bin.
- Using a design brief, design and create a program to control the conveyor belt with a timed sequence.
- Using a design brief, design and create a programme to control the Work-Cell pistons.
- Design and create a program to sort bobbins into batches of four.
- Make a program to measure the width of the Work-Cell bobbins.
- Troubleshoot, fault find and fix ladder logic programs.
- Complete a program to sort bobbins into separate storage bins.
- Sort three bobbins of differing widths into storage bins.

Each assignment is designed around a list of performance objectives. These lists include academic, technical, and occupational objectives. The assignments are written in such a way as to enable a student to attain the performance objectives, with the assessment questions linked to these in order to provide a measure of true competency.

The performance objectives are used by the ClassAct management system to generate a comprehensive portfolio of student competency reports. Default reports supplied with this module include:

- Entry report
- Technical/Occupational Exit report
- Basic Skills report based upon the federal SCAN's report.

The items supplied with this instructional module include:

- 10-assignment On-Screen Student Assignment Guide CD
- 10-assignment Student Assignment Guide
- 10-assignment Student Workbook
- 10-assignment Instructor's Guide
- 10-assignment instructor's Guide
- 30-assignment Student Assignment Guide
- 30-assignment Student Workbook
- 30-assignment Instructor's Guide
- Computer Aided Instruction Software
- Book: 'Manufacturing Technology, Today and Tomorrow'
- Industrial Control Technology Work-Cell
- Industrial Control Work-Cell 'Machine Cover'
- Hand Pump Compressor
- Manufacturing Systems Kit
- Relay Actuator output/opto-isolated input card

Additional items required:

Computer

Module Facts

For Technology Program, order as: ST290/40 Industrial Control Technology

	No.	Average
		time
Assignments	40	45 minutes
Extension Activities	4	45 minutes
	Total	33 hours

LJ Technical Systems Web site: www.ljgroup.com