PRODUCT FACT SHEET

Pneumatics (40-assignment)

This is an integrated instructional module designed specifically to operate within the LJ ScanTEK Modular Technology Program environment. It includes a 10-assignment exploratory curriculum and a further 30-assignment in-depth curriculum. The exploratory curriculum and the in-depth curriculum are each split into two parts. Each part includes a pretest and post test. The module includes hardware, software and curriculum materials sufficient to provide a complete learning experience.

The curriculum incorporates continuous assessment through questions. When used in conjunction with a ClassAct networked management system, this provides instant feedback of student performance. The assessments begin with a comprehensive pre-test. This quiz includes questions for each subsequent assignment, together with questions that will specifically test math and reading ability.

Every assignment starts with a series of questions designed to track inventory. These ensure that any missing items are located before they are needed.

Each assignment is divided into a series of tasks. Hands-on tasks form the core of the student work. Where appropriate, these are accompanied by research tasks based upon illustrated textbooks and onscreen applications. Assessment questions are incorporated into each task.

Typical 10-assignment topic areas include:

- Building and testing pneumatic circuits
- Pneumatic component symbols
- Operation of single acting and double acting cylinders
- Pressure, force and area relationship
- Operation of a 3-port valve
- Exhaust restrictors

Typical 10-assignment activities include:

- Identify the properties of fluids and evaluate the use of compressed air as a medium for transmitting power.
- Evaluate the idea of a pneumatic circuit and learn how to connect and operate the Pneumatics Trainer.
- Investigate pressure and the different scales used to measure it.
- Recognize how symbols can be used in pneumatics to simplify the design and drawing of circuits and components.
- Investigate the operation of a single acting cylinder and 3 port valve in designing circuits for pneumatic vise and stamping applications.
- Evaluate various type of pneumatic cylinders as the output component of a pneumatic circuit and investigate how they operate.
- Investigate valves in detail and recognize them as switch-like components.
- Investigate the relationship between force, pressure and area.
- Carry out a number of cylinder sizing calculations for real pneumatic systems.
- Design a pneumatic system to operate a sliding door.

Typical 10-assignment activities include (continued):

- Investigate how the flow speed of compressed air is controlled in a circuit and how this affects the performance of a pneumatic circuit.
- Design, test and evaluate a solution to an automatic sliding door application using pneumatics.

Typical 30-assignment topic areas include:

- Fluid power and compressed air
- Single and double acting cylinders
- Three port valve
- Pressure and force. Pascal's Law
- Absolute and gauge pressure
- . Standard component symbols
- . Flow charts
- Boyle's law
- Pneumatic logic, AND, OR, NOT, NAND, NOR and XOR
- The advantages and disadvantages of pneumatic systems
- . Introduction to electro-pneumatics .
- Solenoid valve
- Pumps and compressors
- Efficiency of energy input and output
- Pressure operated valves
- Remote control circuit
- Reservoirs for pneumatic time delay
- Sensing circuits, proximity sensing Troubleshooting pneumatic systems

Typical 30-assignment activities include:

- Identify the properties of fluids and evaluate the use of compressed air as a medium for transmitting power.
- Recognize the importance of safety when working with pneumatics.
- Build a simple pneumatic system using a cylinder and valve.
- Introduction to the use of graphical methods to analyze pneumatic systems.
- Introduction to air pressure.
- Discover Pascal's law.
- Investigate air pressure and the scales used to describe it.
- Discover Boyle's law, which relates temperature and volume.
- Investigate the use of symbols in
- communicating pneumatics systems. Recognize basic pneumatic
- component symbols.
- Investigate cylinders in detail.
- Recognize the difference between single and double acting cylinders and how they are controlled.
- Recognize how a shuttle valve can be used in a circuit so a cylinder can be controlled from either of two positions.
- Compare a shuttle valve to a pneumatic logic OR gate.
- Examine how logic can be used to simplify complex control tasks.
- Investigate the function and construction of pneumatic logic AND and NOT gates.

Pneumatics (40-assignment)

Typical 30-assignment activities include (continued):

- Design, test and evaluate a solution to a door locking application using pneumatics and logic control.
- Examine the advantages and disadvantages of pneumatic systems.
- Compare pneumatic systems with other power systems such as mechanical, electrical and hydraulic.
- Examine how pneumatics technology can be interfaced with electronics technology.
- Investigate the theory and operation of a solenoid valve.
- Use electronics to control a
- pneumatic cylinder.
- Examine how electronics can enhance the control of a pneumatic system.
- Examine the function of pumps and compressors.
- Calculate the energy stored in a pneumatic receiver.
- Perform an energy analysis on a pneumatic compressor.
- Determine the factors that influence fluid flow and pressure drop in pipes.
- Examine the transmission pipes used in pneumatic systems.
- Determine how a pneumatic system can be controlled remotely.
- Examine the function and operation of a pressure operated valve.
- Design, test and evaluate a pneumatic system to operate in a hazardous area application.
- Build a basic electro-pneumatic system to sequence a cylinder.
- Analyze an electro-pneumatic system using a step-stroke diagram.
- Build simple AND, OR and NOT logic circuits using electronics.
- Combine simple logic gates to produce NAND, NOR and XOR gates.
- Build logic decision making into a simple electro-pneumatic sequencing system.
- Recognize the definition and components of automated control systems.
- Build a simple electro-pneumatic sorting system.
- Examine the use of microprocessors in automated control systems.
- Revise the formula F = P x A.
- Investigate SI units and use them to solve force, pressure and area problems.
- Select a cylinder for a bottle rejecting application based on performance and cost factors.
- Investigate how a reservoir can be used to produce a pneumatic time delay.
- Build and evaluate a pneumatic time delay circuit.
- Build and evaluate an electro-pneumatic time delay circuit.
- Compare an electro-pneumatic time delay circuit to a pneumatic only time delay.
- Define a sensor. Investigate air sensors.
- Determine the function of the sensors in an electro-pneumatic system.

Typical 30-assignment activities include (continued):

- Use flow charts to simplify the communication of a control problem.
- Design a electro-pneumatic system which will detect the presence of an imperfect part and halt the production process.
- Design, build and evaluate an electropneumatic system, which can sort parts based on whether they are black or clear using logic.
- Improve the design of an electro-pneumatic sorting machine.
- Investigate the theory and procedures for troubleshooting industrial machines.
- Perform a troubleshooting exercise on a faulty electro-pneumatic system.

Each assignment is designed around a list of performance objectives. These lists include academic, technical and occupational objectives. The assignments are written in such a way as to enable a student to attain the performance objectives, with the assessment questions linked to these in order to provide a measure of true competency.

The performance objectives are used by the ClassAct management system to generate a comprehensive portfolio of student competency reports. Default reports supplied with this module include:

- Entry report
- Technical/Occupational Exit report
- Basic Skills report based upon the federal SCAN's report.
- The items supplied with this instructional module include:

10-assignment On-Screen Student

- Assignment Guide CD
- 10-assignment Student Assignment Guide
- 10-assignment Student Workbook
- 10-assignment Instructor's Guide
- 30-assignment Student Assignment Guide
- 30-assignment Student Workbook 30-assignment Instructor's Guide
- Hand Pump Compressor
- Electro-Pneumatic System

Additional items required:

Computer

For Technology program, order as: ST270/40 Pneumatics

	No.	Average
		time
Assignments	40	45 minutes
Extension Activities	4	45 minutes
	Total	33 hours

LJ Technical Systems Web site: www.ljgroup.com