
PRODUCT FACT SHEET

Research and Design (40-assignment)

This is an integrated instructional module designed specifically to operate within the LJ ScanTEK Modular Technology Program environment. It includes a 10-assignment exploratory curriculum and a further 30-assignment in-depth curriculum. The exploratory curriculum and the in-depth curriculum are each split into two parts. Each part includes a pretest and post test. The module includes hardware, software and curriculum materials sufficient to provide a complete learning experience.

The curriculum incorporates continuous assessment through questions. When used in conjunction with a ClassAct networked management system, this provides instant feedback of student performance. The assessments begin with a comprehensive pre-test. This quiz includes questions for each subsequent assignment, together with questions that will specifically test math and reading ability.

Every assignment starts with a series of questions designed to track inventory. These ensure that any missing items are located before they are needed.

Each assignment is divided into a series of tasks. Hands-on tasks form the core of the student work. Where appropriate, these are accompanied by research tasks based upon illustrated textbooks and onscreen applications. Assessment questions are incorporated into each task.

Typical 10-assignment topic areas include:

- Magnetic attraction and repulsion
- Construction of a model levitation vehicle Problem solving/design process
- Speed and velocity and time
- Using light gates to measure vehicle speed
- Acceleration and deceleration forces
- Power level versus time graphs
- Impact sensor to detect vehicle impact
- Prototypes

Typical 10-assignment activities include:

- Compare the principles of magnetic attraction and repulsion and explore how a magnetic levitation vehicle works.
- State the components of a transport system. Look at the principles of design and learn how to connect the equipment and to build and operate the LJ Maglev vehicle.
- Construct the model levitation vehicle. Learn the different types of energy and the
- forms they take.
- Operate the LJ Maglev control software to time events.
- Identify the problem and interpret the design brief.
- Discover the difference between speed and velocity.
- Time the vehicle travelling between the two light gates and calculate the speed (velocity) of the vehicle.
- Research the sources of energy used in transportation systems.
- To learn how to write a test program for automatic control of the vehicle.
- Use graphs to portray the input to a system.
 - Investigate and assess the suitability of various acceleration and deceleration methods for controlling a passenger vehicle.
 - Use an impact sensor to detect vehicle impact.

Typical 10-assignment activities include (continued):

- Develop the solution to achieve controlled acceleration and deceleration.
- Build and test prototype of chosen solution by performing test runs. Test, evaluate and refine the
- chosen solution

Typical 30-assignment topic areas include:

- The technological age, systems and system outputs
- Impacts of science and technology
- Timing gates, sound, light and push button sensors for transport system control
- Design briefs
- Flowcharts
- Continuous and on-demand transport systems
- Vehicle impact sensing
- Vehicle propulsion systems
- Design and problem solving in technology
- Program control of transport systems
- Design evaluation
- Performance testing
- . Passenger protection
- The Get command
- International system of units
- Propulsion systems
- . Testing passenger protection systems
- Password protection

Typical 30-assignment activities include:

- Explore how the Maglev system is set up and controlled. Examine the relationship between science and technology.
- Use the Maglev system to make a timed run. Investigate the impact of
- technology on society today. Research the growth of the automobile and the problems this has caused in our towns and cities. Investigate possible solutions.
- Develop a design brief and specification for a Rapid Transit System.
- Use flowcharts as an aid to writing control system programs.
- Research transportation systems and their mode of operation.
- Write a control program to simulate a Rapid Transit System running in 'continuous' mode.
- Examine transportation support systems. Set up an interactive control system for the Maglev system.
- Investigate analog sensors and how they can be used to provide automatic control for a Rapid Transit System.
- Write a program that can be used to tell the control system whether it is day or night.
- Write a control program to simulate a Rapid Transit System running in 'ondemand' mode.
- Develop tests suitable for checking the performance of the Maglev control system.

Research and Design (40-assignment)

Typical 30-assignment activities include (continued):

- Write a full control system program utilizing 'continuous' and 'on-demand' operation modes.
- Write a program that checks the Maglev control system and associated sensors.
- Evaluate the performance of the finished control system.
- Investigate how the performance of a transportation system could be tested and evaluated using a model system.
- Perform a range of test procedures on a model transportation system.
- Analyze the data collected in the previous assignment to determine the performance of a model transport system.
- Investigate forces, and apply the results of model testing to a real transportation system.
- Investigate the problem of how to protect passengers during collisions and crashes of transport systems. Research momentum.
- Research buffers as one solution method of passenger protection, and examine vehicle structures.
- Test, evaluate and refine a design of a passenger protection system.
- Examine how computer programs can be made to interact with a user. Write an interactive control program for the Maglev system.
- Follow the program development process to design an interactive control program for testing the Maglev system after service or maintenance.
- Examine the energy conversions that take place in transportation systems and carry out an energy analysis of the Maglev system.
- Investigate vehicle propulsion systems and how they convert energy and transform motion from one form to another.
- Problem solving task to improve the overall performance of a vehicle propulsion system.
- Examine interactive control programming further and write a number of control programs using ASCII coding.
- Investigate how to recognize and fix errors in control programs.
- Write an interactive password protection program to restrict access to the Maglev control system.

Each assignment is designed around a list of performance objectives. These lists include academic, technical and occupational objectives. The assignments are written in such a way as to enable a student to attain the performance objectives, with the assessment questions linked to these in order to provide a measure of true competency.

The performance objectives are used by the ClassAct management system to generate a comprehensive portfolio of student competency reports. Default reports supplied with this module include:

- Entry report
- Technical/Occupational Exit report
- Basic Skills report based upon the federal SCAN's report.

The items supplied with this instructional module include:

- 10-assignment On-Screen Student Assignment Guide CD
- 10-assignment Student Assignment Guide
- 10-assignment Student Workbook
- 10-assignment Instructor's Guide
- 30-assignment Student Assignment Guide
- 30-assignment Student Workbook
- 30-assignment Instructor's Guide
- Computer Aided Instruction Software
- Book: 'Exploring Transportation'
 Book: 'Design and Problem Solving
- in Technology'
- Magnetic Levitation Track (Maglev track)
- Interface Panel
- Impact Sensor
- Propulsion Unit
- System Control Panel

Additional items required:

Computer

Module Facts

For Technology Program, order as: ST150/40 Research and Design

	No.	Average
		time
Assignments	40	45 minutes
Extension Activities	4	45 minutes
	Total	33 hours

LJ Technical Systems Web site: www.ljgroup.com