Space Technology (40-assignment)

This is an integrated instructional module designed specifically to operate within the LJ ScanTEK Modular Technology Program environment. It includes a 10-assignment exploratory curriculum and a further 30-assignment in-depth curriculum. The exploratory curriculum and the in-depth curriculum are each split into two parts. Each part includes a pretest and post test. The module includes hardware, software and curriculum materials sufficient to provide a complete learning experience.

The curriculum incorporates continuous assessment through questions. When used in conjunction with a ClassAct networked management system, this provides instant feedback of student performance. The assessments begin with a comprehensive pre-test. This quiz includes questions for each subsequent assignment, together with questions that will specifically test math and reading ability.

Every assignment starts with a series of questions designed to track inventory. These ensure that any missing items are located before they are needed.

Each assignment is divided into a series of tasks. Hands-on tasks form the core of the student work. Where appropriate, these are accompanied by research tasks based upon illustrated textbooks and onscreen applications. Assessment questions are incorporated into each task.

Typical 10-assignment topic areas include:

- Function of the component parts of a model rocket
- Flight stages
- Mass, force and distance relationships
- Height and average speed calculation
- Forces and stability
- Rocket propulsion techniques
- Mission planning
- Safety and performance
- Model rocket assembly for flight
- Pre-flight checks and launch of a model rocket
- Flight and recovery

Typical 10-assignment activities include:

- Watch a video introducing the basics of space technology.
- Find out how computer programs can be used to simulate the flight of model rockets.
- Launch a model rocket.
- Calculate the heights that model rockets reach.
- Calculate the average speeds of model rockets as they fly through the air.
- Use a computer program to apply what you have previously learned to a simulated mission.
- Launch a water-filled rocket.
- Calculate the height and average speed of the water-filled rocket.
- Explore the forces acting on rockets.
- Discover why launch pads may be used.
- Examine the benefits of adding fins to stabilize rockets.
- Perform an experiment to investigate the relationship between mass and the distance traveled by a rocket.
- Use a computer program to explore the relationship between force and the distance traveled by a rocket.
- Construct a simple toy to see how it acts on Earth.

Typical 10-assignment activities include (continued):

- Perform a series of experiments to investigate gravity.
- Explore the hazardous conditions in space.
- Discover how space suits can allow astronauts to work and live in space.

Typical 30-assignment topic areas include:

- Rocket payloads
- Trigonometry calculations to determine height
- Center of gravity and center of pressure
- Rocket stability
- Rocket propulsion techniques
- Analysis of computer simulated flight and actual flight
- Atmospheric forces on a rocket
- Images from space
- Model rocket kit assembly
- Rocket recovery systems

Typical 30-assignment activities include:

- Use a computer program to find out how to put the main components of a model rocket together.
- Use a computer program to find out how model rockets can carry payloads.
- Find out how computer programs can be used to simulate the flight of model rockets.
- Retrieve information from a computer database and use it in rocket flight simulations.
- Calculate the heights of fixed and moving objects using angles and distances
- Examine the stability of model rockets and see how it can be changed.
- Launch a model rocket that carries a payload.
- Use a computer database to store results of a rocket launch and calculate the height reached by the rocket.
- Calculate the velocity of a model rocket and compare this and the height with predictions about the flight. Find out how accurate the predictions were.
- Discover the effect that the size of a payload has on the flight of a model rocket, using the flight simulation program
- Perform tests to experiment with two of the forces that affect a rocket's flight.
- Perform a test to see how the size of a rocket affects its wind resistance.
- Launch a rocket that uses compressed air and water. Perform tests to see the effect of the water on the rocket's flight.
- Examine the energy changes that occur in a rocket from lift off to its destination.
- Find out how energy can be used to determine the speed of space vehicles.
- Find out how measurement errors can cause problems with space missions and use a rocket flight simulator to examine consequences such errors may have.
- Investigate the different systems that are used to return model rockets and real space vehicles to Earth safely.

Space Technology (40-assignment)

Typical 30-assignment activities include (continued):

- Carry out an experiment to measure the pull of the Earth's gravity.
- Use a rocket flight simulator to examine the effect that air has on a rocket in flight.
- Examine a system for demonstrating the effect that the direction of forces can have on a rocket flight.
- Apply a formula to calculate the height of a model rocket that takes aerial photographs.
- Launch a model rocket that takes a photograph while it is in the air.
- Determine the height of a model rocket from the photograph it takes.
- Discover how the view of the Earth differs from different positions in space.
- Explore the different types of satellites that orbit the Earth.
- Design a time line that shows how artificial satellites have developed over the last 40 years.
- Calculate the speed of satellites at different locations and find out how long they take to orbit the Earth.
- Evaluate the benefits and costs that the development of Space Technology has had.
- Find out how instructions can be made easier to read using flow diagrams.
- Design a flow diagram that provides instructions for launching a model rocket.
- Determine the pull of gravity at different distances from the Earth and find how to generate gravity in a space station.

Each assignment is designed around a list of performance objectives. These lists include academic, technical and occupational objectives. The assignments are written in such a way as to enable a student to attain the performance objectives, with the assessment questions linked to these in order to provide a measure of true competency.

The performance objectives are used by the ClassAct management system to generate a comprehensive portfolio of student competency reports. Default reports supplied with this module include:

- Entry report
- Technical/Occupational Exit report
- Basic Skills report based upon the federal SCAN's report.

The items supplied with this instructional module include:

- 10-assignment On-Screen Student Assignment Guide CD
- 10-assignment Student Assignment Guide
- 10-assignment Student Workbook
- 10-assignment Instructor's Guide
- 30-assignment Student Assignment Guide
- 30-assignment Student Workbook
- 30-assignment Instructor's Guide
- Computer Aided Instruction Software
- Video: 'Liftoff to Learning'
- Rocket launch instruction sheets
- Model rocket kits
- Model rocket launch control unit
- Model rocket launch pad
- Spring-loaded dowel launcher
- Safety glasses
- Altitude finder (clinometer)
- Water powered rocket kit
- Bicycle pump

Additional items required:

- Computer
- Access to DVD player

Module Facts

For Technology Program, order as: ST190/40 Space Technology

	No.	Average
		time
Assignments	40	45 minutes
Extension Activities	4	45 minutes
	Total	33 hours

